Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly supportgreen food websbased on primary production andbrown food websbased on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs.more » « less
-
Positive biodiversity–ecosystem functioning (BEF) relationships observed in experiments can be challenging to identify in natural communities. Freshwater animal communities are disproportionately harmed by global change that results in accelerated species loss. Understanding how animal-mediated ecosystems functions may change as a result of global change can help determine whether biodiversity or species-specific conservation will be effective at maintaining function. Unionid mussels represent half of imperiled species in freshwater ecosystems globally and perform important ecological functions such as water filtration and nutrient recycling. We explored BEF relationships for 22 naturally assembled mussel aggregations spanning three river basins. We used the Price equation to partition the contributions of species richness, composition, and context dependent interactions to two functions of interests: spatially-explicit standing-stock biomass (indirect proxy for function) and species-specific nitrogen (N) excretion rates (direct measure of N recycling). Random and non-random species loss each reduced biomass and N recycling. Many rare species with low contributions to biomass contributed to standing-stock biomass in all basins. Widespread species had variable function across sites, such that context dependent effects (CDEs) outweighed richness effects on standing-stock biomass in two basins, and were similar to richness effects in the third. Richness effects outweighed CDEs for N recycling. Thus, many species contributed a low proportion to overall N-recycling; a product we attribute to the high evenness and functional effect trait diversity associated with these communities. The loss of low-functioning species reduced the function of persisting species. This novel result using observational data adds evidence that positive species interactions, such as interspecific facilitation, may be a mechanism by which biodiversity enhances ecosystem functions. Our work stresses the importance of evaluating species-specific contributions to functions in diverse systems, such as nutrient cycling when maintaining specific animal-mediated functions is a management goal because indirect proxies may not completely characterize BEF relationships.more » « less
-
Abstract Understanding patterns of diversity across macro (e.g. species‐level) and micro (e.g. molecular‐level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species‐rich group in the southeastern United States. Using quantitative community surveys and reduced‐representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity–abundance correlations (i.e. the more‐individuals hypothesis, MIH), species‐genetic diversity correlations (SGDCs) and abundance‐genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community‐level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.more » « less
An official website of the United States government
